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This Letter presents a novel approach to enhance the fringe contrast (visibility) in a digital off-axis hologram
digitally, which can save several adjustment procedures. In the approach, we train a pair of coupled dictionaries
from a low fringe contrast hologram and a high one of the same specimen, use the dictionaries to sparse code the
input hologram, and finally output a higher fringe contrast hologram. The sparse representation shows good
adaptability on holograms. The experimental results demonstrate the benefit of low noise in a three-dimensional
profile and prove the effectiveness of the approach.
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Conventional digital holography can be divided into two
main types: in-line digital holography[1], and off-axis
digital holography[2,3]. In the presence of zero-order and
conjugate images, in-line digital holography usually
requires two[4,5] or three[6] phase-shifting holograms to ex-
tract the desired information. This leads to the complexity
of the optical configuration and the restriction on dynamic
applications. Different from the in-line condition, off-axis
digital holography overcomes these shortcomings because
it needs only one single exposure. The main idea of the off-
axis configuration is that the zero order, first order and−1
order of diffraction can be separated from each other in the
angular spectrum of the hologram. By filtering the asso-
ciated spatial frequencies, the zero-order and conjugate
image can be eliminated[7]. Since the fringe contrast in
the hologram affects the diffraction efficiency of −1 order,
the reconstructed three-dimensional (3D) profile has more
serious disturbances when the contrast is lower. In prac-
tice, with the change of the objective lenses, the reflectiv-
ity of different samples, etc., researchers need to adjust the
optical path difference (OPD) and the object-to-reference
intensity ratio or even to employ a longer coherence length
light source to increase the visibility of the fringes. The
operations mentioned above take up much time in prepar-
ing a high-quality hologram, which obviously reduces the
measurement efficiency. Researchers need a novel tech-
nique to increase the visibility digitally.
Sparse representation[8] has already been introduced in

image processing and pattern recognition, etc. These
applications are based on the assumption that the signal
can be sparsely represented according to the compressive
sensing (CS) theory[9,10]. Efforts have been made to
employ this tool in the digital holography field[11–13].
Katkovnik et al.[14,15] utilized the sparse coding of the
amplitude and absolute phase to reconstruct the wave-
front in phase-shifting interferometry and digital off-axis

holography. Memmolo et al. proposed a refocusing cri-
terion via sparsity measurements in digital holography[16].
They also presented a sparsity denoising method of digital
holograms without knowing the noise statistics[17], in
which the speckle noise ns and the additive noise na were
supposed to corrupt the digital hologram H . Here, ns is
assumed as a multiplicative uniform noise, and na is mod-
eled by zero-mean Gaussian noise. In consideration of the
degree of the coherence γ, the hologram with noise can be
written as

H ¼ jOj2 þ jRj2 þ 2jORjjγj cosðφþ nsÞ þ na; (1)

where O is the object light field, R is the reference light
field, and φ stands for the phase difference between O
and R.

In this Letter, we focus on enhancing the fringe contrast
via sparse representation in holograms that are recorded
directly by the imaging sensor in digital off-axis hologra-
phy. Although the zero order ðjOj2 þ jRj2Þ in Eq. (1) can
be suppressed[18,19], it is not appropriate to improve the
contrast of the pixel values directly in the presence of
na. The method we used is based on the coupled dictionary
training technique, which has been used for image super-
resolution[20]. We record a high fringe contrast hologram
and a low fringe contrast hologram of the same sample
to train a couple of dictionaries. The image patches in
the holograms are approximated by a sparse linear com-
bination of the dictionary atoms.

The experiments were conducted on an improved
Mach–Zehnder interferometer optical system, as shown
in Fig. 1(a), where the sample was a 1951 USAF resolution
test target. Since the reflected object light intensity
influences the visibility (contrast) in the hologram, the
non-uniform reflectivity of the sample should be consid-
ered as well. The test target just contains both the high
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reflectivity patterns (chromium film) and the low reflec-
tivity background (glass). An additional adjusting unit
(indicated by red dashed box in Fig. 1(a)) was inserted
to change the OPD between the object and the reference
beams. We used a He–Ne laser with a wavelength of
632.8 nm and a coherence length of about 30 cm. The size
of the sensor pixel was 4.65 μm× 4.65 μm, and the 20×
objective lens had a numerical aperture of 0.40. By chang-
ing the position of the unit along arrow A, we got a series
of image-plane holograms with different fringe contrasts.
Next, we prepared a couple of dictionaries Dx and Dy,

where Dx is the dictionary of high contrast space and Dy is
the dictionary of low contrast space. The holograms with
the highest and the lowest contrast were selected for train-
ing, as shown in Figs. 1(b) and 1(d), where the areas in the
red squares are enlarged in Figs. 1(c) and 1(e), respec-
tively, to show their difference in fringe contrast. The
training of the dictionaries is based on the patchwise
sparse recovery method[20], where the typical database is
one of the key points for specific applications, such as
holography. We input two holograms of the same sample:
Xt⊆Rn with a high fringe contrast and Yt⊆Rn with a low
fringe contrast, where Rn represents an n-dimensional real
space. To guarantee that the dictionaries are over-
complete, a large number of patches xj and yj ðj ¼
1;…;NÞ were sampled from Xt and Yt , respectively. Dif-
ferent from other applications of sparse representation[20],
these patches were not “empty” (all pixels are nearly same
in an empty patch). We will always observe the interfer-
ence fringe in the patch, even all pixels of the patch that
are background. Because of the mapping from yj to xj is
unknown and probably nonlinear, we tend to learn the
coupled dictionaries with machine learning techniques

instead of applying the CS theory immediately. The objec-
tive function of training Dx and Dy simultaneously can be
expressed as

min
Dx ;Dy

XN

i¼1

ðμ‖Dxzj − xj‖22 þ ð1− μÞ‖Dyzj − yj‖22Þ; (2)

where μð0 < μ ≤ 1Þ balances the reconstruction errors of
xj and yj , and zj is the sparse code of xj and yj . Since
Eq. (2) is highly nonlinear and nonconvex, the dictionary
Dx is initialized by standard sparse coding and then fixed
while the dictionary Dy is optimized first by a descent
method[21]. When Dy is converged, we fix it and then opti-
mize Dx :

min
Dx

XN

i¼1

‖Dxzj − xj‖22

s:t: zj ¼ arg min
α

‖yj −Dyα‖22 þ λ‖α‖1; i ¼ 1;…;N

‖Dxð∶; kÞ‖2 ≤ 1; k ¼ 1;…;K : (3)

where λ is the Lagrangian andDxð∶; kÞ is the kth column of
Dx . The objective function together with the inequality
constraint function in Eq. (3) is quadratic, which is a
quadratically constrained quadratic program problem[22]

and can be solved by using a conjugate gradient
descent[23].

After training the dictionaries Dx and Dy for the
coupled spaces, we can start to enhance the fringe contrast
of the input hologram Y . The hologram patch yi ði ¼
1;…;NÞ is extracted from Y with insufficient fringe con-
trast, and xi ∈ X is supposed to be the desired patch with
high contrast. Our goal is to acquire the high contrast
patches xi in terms of Dx with the formula

xi ¼ Dxα: (4)

The sparse representation α also satisfies the similar rela-
tion between the given low contrast patches yi and the
dictionary Dy:

yi ¼ Dyα: (5)

As described in Ref. [24], the issue of calculating α is
known as the Lasso[25], which can be formulated as

min
α

‖Dyα− yi‖22 þ λ‖α‖1: (6)

Since the degree of approximation to yi (evaluated by the
square of the l2 norm ‖Dyα− yi‖2) and the sparsity of α
(represented by the l1 norm ‖α‖1) need to be balanced, the
Lagrangian λ is introduced, which means a weighting of
the smoothing property; it influences the ability to toler-
ate na on some level. Before solving Eq. (6), we must con-
sider the reasonability of using the image patches directly.
For holograms, the main feature is the interference fringe,
which indicates that the differences between adjacent

Fig. 1. (a) Experimental setup for reflective off-axis digital
holography, (b) highest fringe contrast hologram Xt , (c) local
zoom of (b), (d) lowest fringe contrast hologramYt , and (e) local
zoom of (d).
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pixels are directional. We extract the normalized gradient
feature (x 0i and y0i) for each patch (xi and yi) to eliminate
the influences of uneven illumination. Hence, yi in Eq. (6)
is replaced by y0i . After solving Eq. (6), we substitute α into
x 0i ¼ Dxα∕‖Dxα‖2 and get x 0i . The high fringe contrast
hologram patch xi is then acquired from its normalized
gradient feature x 0i . However, compatibility may occur
between the adjacent patches. Recovering each high con-
trast patch individually may result in the discontinuity of
the interference fringe. Thus, we partially overlap the pix-
els of the adjacent patches when extracting and restoring
them and average the values of the overlapped area. The
algorithm is summarized in Fig. 2.
We set the dictionary size K to 512 and input the train-

ing images Xt and Yt . Then, N ¼ 15000 patches pairs are
sampled fromXt andYt . Each patch is 10 × 10, according
to the period of the interference fringes. The same param-
eters are used in the fringe contrast enhancement proce-
dures as well. The parameter λ is set to 0.1 when
computing sparse coefficients. We take the mean value
m of the patch yi and extract the normalized gradient
feature by y0i ¼ ðyi −mÞ∕‖yi −m‖2. Accordingly, the
high fringe contrast patch xi is recovered by xi ¼
x 0i · ‖yi −m‖2 þm. The training for the dictionaries is
executed in MATLAB and takes about 28 min on a per-
sonal computer (Intel i5-3230M, 2.60 GHz CPU, 4GB
RAM) without using a GPU or parallel processing (only

one core was utilized). The enhancement of a
512 × 512 pixels hologram takes 19.8 s in average.

There are two principal differences in our approach.
First, our target is to enhance the fringe contrast in an
off-axis hologram. Second, the two images we used for dic-
tionary training are the holograms recorded directly by
the camera in digital off-axis holography and have the
highest and lowest fringe contrast. We do not need to care
about the effect of magnification, as described in Ref. [20].
The training images they used are a high resolution image
and a low resolution image, where the high resolution
image is blurred, downsampled, and then upscaled by
bicubic interpolation to obtain the low resolution image.

Figures 3(a1) and 3(c1) are the original holograms of
the 1951 USAF resolution test target that recorded differ-
ent parts of Fig. 1(b). Both of the holograms havea rela-
tively lower fringe contrast than Xt . The enhanced
holograms are exhibited in Figs. 3(b1) and 3(d1). To
prove the effectiveness of our algorithm, the regions in
the red squares of Figs. 3(a1)–3(d1) are magnified in
Figs. 3(a2)–3(d2). We can clearly observe that the fringe

Fig. 2. Fringe contrast enhancement algorithm of digital off-axis
hologram via sparse representation.

Fig. 3. Comparison of the recorded holograms and enhanced
holograms of a different part on 1951 USAF resolution test tar-
get: (a1) recorded hologram, (a2) local zoom of (a1), (a3) 3D pro-
file of (a1); (b1) enhanced hologram of (a1), (b2) local zoom of
(b1), (b3) 3D profile of (b1); (c1) recorded hologram with higher
contrast than (a1), (c2) local zoom of (c1), (c3) 3D profile of (c1);
(d1) enhanced hologram of (c1), (d2) local zoom of (d1), (d3) 3D
profile of (d1); (e) pixels value of lines indicated by yellow lines in
(c2) and (d2).

COL 14(6), 060901(2016) CHINESE OPTICS LETTERS June 10, 2016

060901-3



contrast in the enhanced holograms is much higher than
that in the original holograms. The corresponding 3D pro-
files of the holograms are shown in Figs. 3(a3)–3(d3). The
angular spectrum filtering, phase unwrapping, and aber-
ration compensation of the holograms are operated in the
same way[26]. Apparently, the 3D profiles of the enhanced
holograms have less noise. Especially in Fig. 3(a3), the
noise is too heavy to get a correct unwrapping result, while
in Fig. 3(b3), it is possible to observe the pattern with our
algorithm. The fringe contrast in Fig. 3(c1) is a little
higher than that in Fig. 3(a1), leading to a better 3D
reconstruction, as shown in Fig. 3(c3). The improvement
can be seen as well in Fig. 3(d3). In Fig. 3(e), the blue line
stands for the pixels value of the section indicated by the
yellow line in Fig. 3(c2), and the red line represents
the pixels value of the section indicated by the yellow line
in Fig. 3(d2). We can find that the amplitude of the red
line is higher than the blue line. To describe the enhance-
ment of the algorithm quantitatively, we calculate the
visibility of interference fringes by Fourier analysis[27].

The visibility of the sections in Figs. 3(c2) and 3(d2)
are 0.115 and 0.204, respectively, verifying the effective-
ness of the algorithm by the enhancement of 77.4%.

For further verification, we introduce a groove plate
that has a groove depth of 200� 5 nm as another sample.
The dictionaries stay the same to indicate the applicabil-
ity of the algorithm, and a similar trend can be noticed in
the results, as shown in Fig. 4. Profiles of the sections in
Figs. 4(c2) and 4(d2) are plotted in Fig. 4(e) by the blue
and red lines, respectively. The ideal profile is expressed by
the green dashed line. The red profile is smoother than
the blue profile. To evaluate the improvement in 3D
reconstruction, we calculate the standard deviation to
estimate the noise. The standard deviations of the sections
in Figs. 4(c2) and 4(d2) are 24.6 and 18.5, improving
about 24.8%.

By observing the holograms for training and testing, we
notice that the interference fringes in them are indeed the
same type (with the similar period). This is because the
interference fringe period depends on the angle between
the object beam and the reference beam. Once the off-axis
optical system is determined, the holograms acquired by
the system are almost the same type. The concentric
fringes in Figs. 3(a3) and 4(a2) come from the residual
wrapped phase due to their frustrated unwrapping proc-
esses. The concentric fringes in Fig. 4(c2) come from ghost
images, which are components of the zero order in the
angular spectrum. The signal-to-noise ratio (þ1 order
to 0 order ratio) reduces as the fringe contrast decreases.

Therefore, the sparse representation based on the
coupled dictionary training technique provides a novel
way to enhance the fringe contrast of digital off-axis holog-
raphy digitally. If enough kinds of image pairs (containing
most of the characteristics of the samples to be tested) are
obtained for training the dictionaries, the measurement
efficiency can be effectively improved by saving the pro-
cedures for adjusting the optical system.

References
1. G. Pedrini, P. Fröning, H. Fessler, and H. J. Tiziani, Appl. Opt. 37,

6262 (1998).
2. E. Cuche, P. Marquet, and C. Depeursinge, Appl. Opt. 39, 4070

(2000).
3. J. Zheng, P. Gao, B. Yao, T. Ye, M. Lei, J. Min, D. Dan, Y. Yang,

and S. Yan, Photon. Res. 2, 87 (2014).
4. C. S. Guo, B. Sha, Y. Y. Xie, and X. J. Zhang, Opt. Lett. 39, 813

(2014).
5. Y. Awatsuji, T. Tahara, A. Kaneko, T. Koyama, K. Nishio, S. Ura,

T. Kubota, and O. Matoba, Appl. Opt. 47, D183 (2008).
6. Y. Awatsuji, A. Fujii, T. Kubota, and O. Matoba, Appl. Opt. 45,

2995 (2006).
7. E. Stoykova, H. Kang, and J. Park, Chin. Opt. Lett. 12, 060013

(2014).
8. Z. Zhang, Y. Xu, J. Yang, X. Li, and D. Zhang, IEEE Access 3, 490

(2015).
9. M. Elad, Sparse and Redundant Representations (Springer, 2010).

10. M. Elad, M. A. T. Figueiredo, and Y. Ma, Proc. IEEE 98, 972
(2010).

11. Y. Rivenson, A. Stern, and B. Javidi, Appl. Opt. 52, A423 (2013).

Fig. 4. Comparison of the recorded holograms and enhanced
holograms of a groove plate: (a1) recorded hologram, (a2) 3D
profile of (a1); (b1) enhanced hologram of (a1), (b2) 3D profile
of (b1); (c1) recorded hologram with higher contrast than (a1),
(c2) 3D profile of (c1); (d1) enhanced hologram of (c1), (d2) 3D
profile of (d1); (e) profiles of the same section in (c2) and (d2).

COL 14(6), 060901(2016) CHINESE OPTICS LETTERS June 10, 2016

060901-4



12. X. Cao, X. Sang, Z. Chen, Y. Zhang, J. Leng, N. Guo, B. Yan,
J. Yuan, K. Wang, and C. Yu, Chin. Opt. Lett. 12, 080901 (2014).

13. M. Sha, J. Liu, X. Li, and Y. Wang, Chin. Opt. Lett. 12, 060023
(2014).

14. V. Katkovnik, I. A. Shevkunov, N. V. Petrov, and K. Egiazarian,
Opt. Lett. 40, 2417 (2015).

15. V. Katkovnik and J. Bioucas-Dias, J. Opt. Soc. Am. A 31, 1801
(2014).

16. P. Memmolo, M. Paturzo, B. Javidi, P. A. Netti, and P. Ferraro,
Opt. Lett. 39, 4719 (2014).

17. P. Memmolo, I. Esnaola, A. Finizio, M. Paturzo, P. Ferraro, and
A. M. Tulino, Opt. Express 20, 17250 (2012).

18. C. Liu, Y. Li, X. Cheng, Z. Liu, F. Bo, and J. Zhu, Opt. Eng. 41, 2434
(2002).

19. T. M. Kreis and W. P. O. Jüptner, Opt. Eng. 36, 2357 (1997).

20. J. Yang, Z. Wang, Z. Lin, S. Cohen, and T. Huang, IEEE Trans.
Image Process. 21, 3467 (2012).

21. J. Yang, K. Yu, and T. Huang, in Proceedings of IEEE Conference
on Computer Vision and Pattern Recognition (IEEE, 2010),
pp. 3517.

22. S. Boyd and L. Vandenberghe, Convex Optimization (Cambridge
University Press, 2004).

23. H. Lee, A. Battle, R. Raina, and A. Y. Ng, in Advances in Neural
Information Processing Systems (2006), pp. 801.

24. J. Yang, J. Wright, T. S. Huang, and Y. Ma, IEEE Trans. Image
Process. 19, 2861 (2010).

25. R. Tibshirani, J. Roy. Statist. Soc. B 58, 267 (1996).
26. X. Wang, W. Gong, F. Liu, and H. Wang, Proc. SPIE 7848, 78482X

(2010).
27. J. Pomarico and R. Torroba, Optik 95, 152 (1994).

COL 14(6), 060901(2016) CHINESE OPTICS LETTERS June 10, 2016

060901-5


